4年間の学びのステップ

安学が 設計製図の基礎を学び 文化・風土との関わりも 理解します

1年次は設計製図の基礎をしっかりと学修。建築学に不可 欠な数学・物理を学ぶと同時に建築とのつながりを理解し ます。また、建築と文化・風土との関わりも考察します。 2年次 設計とエンジニアリングを 融合した、建築の提案に 挑戦します

設計とエンジニアリングをより専門的に学ぶと同時に、それらの融合を図ります。例えば「建築設計1・2」では、設計の基礎を発展させ、環境や構造を考慮した作品制作を行います。

3年次 | グループワークの 実習を重ね 総合力を身につけます

基礎と専門知識を身につけた後、意匠設計・構造設計・設備設計などの 役割を担って共働して作品制作に取り組みます。グループワークを通 して異なる分野への理解を深め、コミュニケーション力を身につけま す。 本業設計・卒業研究を **年次** 行い、専門性と実践力を 高めます

卒業設計・卒業研究に取り組みます。自らの課題を発見し、快適で安全かつ持続可能な建築空間、都市空間の創造をめざします。建築の専門性だけでなく協調性やプレゼンテーション力も養います。

		科目	1セメスター	2セメスター	3セメスター	4セメスター	5セメスタ	_	6セメスター 研究室決定	7セメスター	8セメスター
		専門基礎科目	■建築学概論 ■創造工学基礎演習1 物理学基礎 化学基礎 数学基礎	■創造工学基礎演習2 微分積分 基礎統計学 線形代数 物理学実験 化学実験						建築のための英語 注目の研究! ・建築設計方法や近代建築・建築家に関する研究 ・歴史的建造物の保存活用に関する研究 ・接気設備の計画設計に関する研究	
	専門科目	専門基幹科目	■静定梁・静定トラスの 力学及び力学演習 ■建築構造材料	力学及び力学演習	■日本建築史 ■温熱環境学	■西洋建築史 ■空気環境学 ■建築の構造2 光環境学	建築音響学			 室内音響設計、騒音制御、音 昼光利用による心理・生理影 耐震補強技術や新構造材料 耐震・制震・免震建築物の耐 屋上緑化、都市緑化に関する 地震防災工学、液状化対策に 	響、省エネルギーに関する研究 に関する研究 震性評価に関する研究 研究
		専門展開科目				■建築工学基礎演習2 ■建築計画1 ■建築計画2 不静定構造の力学	■建築計画2 ■建築設計3 ■建築設備1 ■建築生産 ■建築法規 現代建築論 地盤工学 鉄骨構造 建築仕上げ材料	鉄建	:筋コンクリート構造 築設備2 築基礎構造	■ゼミナール1 建築設計5 建築耐震構造 建築構造設計演習 ■卒業研究	■ゼミナール2

建築エンジニアリング演習