

<u>CFRP</u>	<u>CFRP積層材の低速衝撃損傷</u>					
過去40~50年間に無数の基礎研究・応用研究および技術開発が蓄積						
武田展雄	1986	複合材料の衝撃応答と破壊 (Ⅳ)	日本複合材料学会誌	Vol.12, No.2, pp.80–90.		
Abrate, S.	1991	Impact on laminated composite materials	Applied Mechanics Reviews	Vol.44, No.4, pp.155–190.		
Abrate, S.	1994	Impact on laminated composite materials: Recent advances	Applied Mechanics Reviews	Vol.47, No.11, pp.517–544.		
Richardson, M.O.W. and Wisheart, M.J.	1996	Review of low-velocity impact properties of composite materials	Composites Part A	Vol.27, No.12, pp.1123–1131.		

エネルギ・航空運動発展の分全性内上に貫する局積度マルチスケート漫画計画体系の構築 「デーマ2:高分子航空台社のマルチスケール保留/留手条の開発となの調売小以及モニタリングへの応用 「CPRPA開催がの意味要単語(目:こに定ての実施内容と今然について)(①飲木・清蕪・金原・村山))						
CFRP積層材の低速衝撃損傷						
超音波探傷技術の活用 + 研磨切断面の光顕観察(トランスパースクラック観察)						
衝撃エネルキと正の相関を有するはく離投影面積を損傷量とする						
	+ 曲げ剛性の低下も損傷	の度合いを定量的に表	良しえるとして採用			
栗山卓, 成澤郁 夫, 佐藤淳, 阿 部利彦	衝撃を受けたCFRP積層板 の超音波映像および残存強 度	材料	Vol.39, No.438, pp.247–253.			
盛田英夫, 松本 浩之	5 落すい試験によるCFRP積層 板の耐衝撃損傷性評価	日本機械学会論文集 A編	Vol.61, No.581, pp.127–132.			
小林昭, 荻原慎 二, 粕谷聡, 石 山和義	7 平繊CFRP積層板の落錘衝 撃による微視的損傷	材料	Vol.46, No.5, pp.539–543.			
倉敷哲生,座古 勝,棒田訓名理 200	CFRP積層材の低エネルギ 5 衝撃損傷評価に関する研究 (第1報)	日本機械学会論文集 A編	Vol.71, No.704, pp.656–662.			
私立大学戰略的研究基整形成支援事業,平成29年度研究成果報告会 平成30年2月27日(火)13:00~17:10 千葉工業大学,津田沼校告,5号館6階会議室						

エネルキ・航空運動運動の会合性的上に関する高加度でルテスケール活動型酸体系の構築 「デーマ2:高分子は他合材料のマルチスケール活動が増加したモンロンスモニタリングへの応用 「「CFRM最好の低空動学術店:これまての実施外船と全体低ついて1(○鈴木・青橋・金梁・村山)」							
<u>CFRP</u> 積	CFRP積層材の低速衝撃損傷						
衝撃後残留	衝擊後残留圧縮強度:CAI(Compression after impact)特性評価						
規格化 SACN	IA R.N	/l. 3R-94 (1994) / JIS K708	9 (1996) 既定の積用	構成・試験片サイス			
超音波探傷(C	-scop	e/B-scope)+研磨切断面の	光顕観察(トランスパース)	ラック観察)			
衝撃後の試験	片に支	して既定の治具による圧縮	は験を実施し残留強度	を評価			
石川隆司, 松嶋 正道, 林洋一	2000	従来型CF/エポキシ積層材 の衝撃後残留圧縮強度 (CAI)試験時の力学的挙動	日本複合材料学会誌	Vol.26, No.4, pp.141–151.			
石川隆司,林洋 一,松嶋正道	1994	CF/PEEK材とCF/エポキシ 材を用いた補強平板構造の 衝撃後残留圧縮強度	日本航空宇宙学会誌	Vol.42, No.484, pp.319–328.			
荻原慎二,小林 昭,田中知樹	1997	CFRP積層板の落錘衝撃に よる微視的損傷と残留圧縮 強度	日本機械学会論文集 A編	Vol.63, No.611, pp.1505-1510.			
私立大学戰略的研究基盤形成支援事業,平成29年度研究成果報告会 平成30年2月27日(火) 13:00~17:10 千葉工業大学,準因沼铁舍,5号館6階会議室							

エネルギ・航空運動機構の空全性向上に含する高程度でルテスケール構成部件体系の構築 アーマ2:高分子基準合材料のマルチスケール環境運動音楽公園際とその構造へルスモニタリングへの応用 「CFEPR超其の低速量が展開す:これ定す(の実施内容と全急について)(○林本・斉振・金鹿・村山) 6							
CFRP積層	CFRP積層材の低速衝撃損傷						
CAI試験の普及 新規材料スクリーニング用金 CFRP積層材物性評価研究							
駒井謙治郎, 箕島弘二, 田中和人	1997	繊維強化樹脂基複合材料の簡攀・圧縮破 準特性と水環境効果	日本機械学会論文集 A領	Vol.63, No.610, pp.1198–1204.			
加ــــــــــــــــــــــــــــــــــــ	2005	炭素繊維/高靱性ポリイミド省脂複合材料 MR50K/PET15の価単後圧縮(CAI)強度特 性について	日本複合材料学会誌	Vol.31, No.1, pp.21–30.			
Saito, H. and Kimpara I.	2006	Evaluation of impact damage mechanism of multi-axial stitched CFRP laminate	Composites Part A	Vol.37, No.12, pp.2226–2235.			
青木雄一郎,山田健,石 川隆司,逢吾一	2006	CFRP被勝板の簡単後残害圧縮強度特性 に及ぼす吸水・環境温度の影響	日本複合材料学会誌	Vol.32, No.4, pp.163–170.			
機関智弘, 青木雄一郎, 小笠原俊夫	2007	薄厚層を有する高靱性CFRP積層板の面 外衝撃損傷拳動及びCAI特性	日本航空宇宙学会誌	Vol.55, No.643, pp.388–395.			
星光, 中野啓介, 岩場豊, 石川隆司, 矢島浩	2007	CFRPスカーフ接着墓手の衛華後強度特 性	日本複合材料学会誌	Vol.33, No.3, pp.104–115.			
金崎真人,内城千翔,田 中基酮,斉藤祥酮,西川 雅韋,北條正樹,金原ン	2015	CF/PA6 猪層 板における熱融着を利用した 衝撃損傷修復と圧縮強度の回復	日本複合材料学会誌	Vol.41, No.1, pp.33–44.			
私立大学戦略部 平成30年2月27	★ 私立大学戦略的研究基盤形成支援事業・平成29年度研究成果報告会 平成30年2月27日(火) 13:00~17:10 千葉工業大学・津田沼校舎・5号館職会議室						

「オネルキ・航空運動器の安全性会上に資する具体変化がスケール接触器を体系の構築 「テーマ2:信分子重複合社体のマルオスケール目標提示学会ない以来とての認定しています。 「CFRPA開催材の低温病学振信::これまでの実施内容と全髪について!(○鈴木・斉藤・金慶・村山)						7		
	<u>CFRP積層材の低速衝撃損傷</u>							
数値シミュレーションから複雑な本力学破壊現象の解明を目指す								
低	速衝撃を受ける種	肥料	オ中にはトランスパースクラックを伴・	った多重層間は	く離が発生・進	展		
	末益博志, 小長孝司, 間 島理, 林邦夫	1995	多重層間で制蔵したクロスプライ被層板の 圧縮争動と制蔵クラックの不安定問題に 関する有限要素解析	日本航空宇宙学会誌	Vol.43, No.500, pp.513-519.			
	間島理, 末益博志	2000	後合村料装層板中の多重層間剝離伝播 挙動の非線形有限要素解析	日本複合材料学会誌	Vol.26, No.6, pp.219 -226.			
	倉敷智生, 座古勝, 椎野 努, 林禎彦	2005	CFRP被用材の低エネルギ菌業損傷評価 に関する研究(第2報)	日本機械学会論文集 A編	Vol.71, No.704, pp.663–669.			
	前墙畫,胡車,原栄一,福 永久雄	2008	低速簡攀荷重下におけるCFRP獲似等方 性板の損傷進展予測	日本航空宇宙学会就	Vol.56, No.652, pp.220-227.			
	吉村彰記, 仲尾知晃, 武 田晟雄	2008	板厚方向の籠合によるCFRP積層板の面 外衝撃損傷抑制効果	日本複合材料学会誌	Vol.34, No.5, pp.182 –188.			
	市来論, 末益博志, 青木 雄一郎	2012	衝撃損傷を有するCFRP積層板の圧縮挙 動と破壊現象に関する考察	日本複合材料学会誌	Vol.38, No.6, pp.254 -261.			
	市未識,末益博志	2015	二重らせん損傷を有する複合材料装層板 の圧線荷重下における簡準損傷進展メカ ニズム	日本機械学会論文集	Vol.81, No.826, DOI:10.1299/transjs me.14-00380.			
私立大学戦略的研究基盤形成支援事業・平成28年度研究成果報告会 平成30年2月27日(火)13:00~17:10 千葉工業大学・津田沼校会・5号館6階会議室								

X線CTの複合材研究への活用の現状							
複合材料内部の破壊・損傷・欠陥・ポイドの切断面観察・非破壊検査							
複合材料的	複合材料内部の繊維配向観察・繊維配向モデル化						
松浦滋男. 藤井正司	1986	産業用X線CTスキャナ	日本複合材料学会誌	Vol.12, No.1, pp.2-7.	初期の解説記事		
石川隆司, 杉本直, 青木卓哉, 岩堀豊	2005	マイクロCTの宇宙・航空用先進 複合材研究への応用	非破壊検査	Vol.54, No.5, pp.233–237.	C/Cの破壊進展観察, 義合 強化CFRPの層間破壊挙動 観察 (A)マテリアルペース解析		
吉村彰記, 観谷亮 平, 小柳淵, 小笠原 俊夫	2014	X線CT国像を用いたCFRP積層 板の繊維方向測定	日本複合材料学会誌	Vol.40, No.4, pp.146–152.	CT面像に面像相関法を適用 し繊維方向を算出.(A)マテリア ルペース解析		
世木, 鈴木, 宮田, 新井, 福島, 細井厚 志, 川田宏之	2017	層間高額性化厚肉CFRP積層 板の面外方向疲労特性評価及 びX線CTによる損傷観察	日本複合材料合同会 職 JCCM8	20-09	CFRP中のポイドやクラックの 観察. (A)マテリアルヘース解析		
高橋拓也, 飯塚啓 輔, 上田政人, 吉村 彰紀, 中山真広	2017	X線コンピュータ新層撮影を用いた 一方向炭素繊維強化プラスチック の三次元有限要素モデル構築と 圧縮シミュレーション	日本複合材料合同会 業 JCCM8	28-05	CFRP中の実配向機能を FEMモデル化.(A)マテリアル ペース解析. 一部(B)形状ペー ス解析		
(A)マテリアルヘース解析タイプの研究が大半を占める、CTの可能性の一部を利用しているのみ、							
私立大学戦略的研究盖盤形成支援事業、平成29年度研究成果報告会 平成30年2月27日(火)13:00~17:10 千葉工業大学、澤田沼校会、5号館6階会議室							

